Technical difficulties have been reported by some users of the search function and is being investigated by technical staff. Thank you for your patience and apologies for any inconvenience caused.

The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been endorsed by the ANZCTR. Before participating in a study, talk to your health care provider and refer to this information for consumers
Trial details imported from ClinicalTrials.gov

For full trial details, please see the original record at https://clinicaltrials.gov/ct2/show/NCT01725269




Registration number
NCT01725269
Ethics application status
Date submitted
8/11/2012
Date registered
12/11/2012
Date last updated
9/04/2014

Titles & IDs
Public title
Long-term Study of AIR001 in Subjects With WHO Group 1 Pulmonary Arterial Hypertension Who Completed AIR001-CS05
Scientific title
A Phase 2, Multicenter, Open-Label Study to Evaluate the Intermediate/Long Term Safety and Efficacy of AIR001 in Subjects With WHO Group 1 Pulmonary Arterial Hypertension
Secondary ID [1] 0 0
AIR001-CS06
Universal Trial Number (UTN)
Trial acronym
Linked study record

Health condition
Health condition(s) or problem(s) studied:
Pulmonary Arterial Hypertension 0 0
Condition category
Condition code
Respiratory 0 0 0 0
Other respiratory disorders / diseases
Human Genetics and Inherited Disorders 0 0 0 0
Other human genetics and inherited disorders
Cardiovascular 0 0 0 0
Hypertension

Intervention/exposure
Study type
Interventional
Description of intervention(s) / exposure
Treatment: Drugs - AIR001

Experimental: 80mg AIR001, nebulized four times daily - AIR001, 80 mg into nebulizer

Experimental: 46 mg AIR001, nebulized four times daily - AIR001, 46 mg into nebulizer

Experimental: 80mg AIR001, nebulized once daily - AIR001, 80 mg into nebulizer


Treatment: Drugs: AIR001
All doses specified are the amount loaded into the I-neb AAD System nebulizer.

Intervention code [1] 0 0
Treatment: Drugs
Comparator / control treatment
Control group

Outcomes
Primary outcome [1] 0 0
To evaluate the intermediate/long-term safety of inhaled nebulized AIR001
Timepoint [1] 0 0
minimum of 6 months
Secondary outcome [1] 0 0
To assess the effect of inhaled AIR001 on Time to Clinical Worsening, 6MWD, Functional Class, and Quality of Life
Timepoint [1] 0 0
minimum of 6 months

Eligibility
Key inclusion criteria
1. Evidence of a personally signed and dated informed consent document indicating that
the subject (or a legally acceptable representative) has been informed of all
pertinent aspects of the study prior to initiation of any subject-mandated procedures.

2. Is willing and able to comply with scheduled visits, treatment plan, laboratory tests,
and other study procedures.

3. Has completed the 16-week AIR001-CS05study as planned.

4. If on corticosteroids, has been receiving a stable dose of less than or equal to 20
mg/day of prednisone (or equivalent dose, if other corticosteroid) for at least 1
month (30 days) prior to the AIR001-CS05 study Baseline/Day 1 visit. If receiving
treatment for Connective Tissue Disease (CTD) with any other drugs, doses should
remain stable, if clinically feasible, for the duration of the AIR001-CS06 study.

5. Women of childbearing potential must be using at least one form of medically
acceptable contraception (i.e. either oral, topical, implanted hormonal
contraceptives, or an intrauterine device) or two barrier methods; have a negative
pregnancy test at Screening and Baseline/Day 1 and agree to use reliable methods of
contraception until at least 24-hours after the last dose of study drug. Women who are
surgically sterile (i.e. hysterectomy, bilateral oophorectomy, or tubal ligation) or
those who are post-menopausal for at least 2 years are not considered to be of
childbearing potential. Men who are not sterile (i.e. have not had a vasectomy) must
also agree to use contraception until at least 24-hours after the last dose of study
drug.
Minimum age
18 Years
Maximum age
75 Years
Sex
Both males and females
Can healthy volunteers participate?
No
Key exclusion criteria
1. Participation in a device or other interventional clinical studies (other than
AIR001-CS05), within 1 month (30 days) of Baseline/Day 1 and/or during study
participation.

2. Has uncontrolled systemic hypertension as evidenced by sitting systolic blood pressure
> 160 mmHg or sitting diastolic blood pressure > 100 mmHg during Baseline/Day 1 visit.

3. Systolic blood pressure < 90 mmHg at Baseline/Day 1.

4. Diagnosis of Down syndrome.

5. Moderate to severe hepatic impairment classified as a Child-Pugh Class B or C at
Baseline/Day 1.

6. Has chronic renal insufficiency as defined by serum creatinine > 2.5 mg/dL or has an
estimated Glomerular Filtration Rate (eGFR) < 30 mL/min at Baseline/Day 1, or requires
dialytic support.

7. Has a hemoglobin (Hgb) concentration < 8.5 g/dL at Baseline/Day 1.

8. Personal or family history of the following:

1. Congenital or acquired methemoglobinemia;

2. RBC CYPB5 reductase deficiency.

9. History of glucose-6-phosphate dehydrogenase (G6PD) deficiency or any contraindication
to receiving methylene blue.

10. For subjects with Human immunodeficiency virus (HIV) associated PAH, requirement for
the use of inhaled pentamidine.

11. The use of oral or topical nitrates (nitroglycerin, glyceryl trinitrate (GTN),
isosorbide dinitrate, and isosorbide mononitrate) within 1 month (30 days) prior to
Baseline/Day 1 or throughout the AIR001-CS06 study until EOS or Termination visit.
Note: Intravenous GTN in an emergency setting may be administered by starting with a
low dose and titrating upward, while the subject is being monitored closely for
changes in blood pressure and heart rate.

12. Known or suspected hypersensitivity or allergic reaction to sodium nitrite or sodium
nitrate.

13. History of malignancy within 5-years prior to Baseline/Day 1 of the AIR001-CS05 study,
with the exception of localized non-metastatic basal cell carcinoma of the skin and in
situ carcinoma of the cervix.

14. Other severe acute or chronic medical or laboratory abnormality that may increase the
risk associated with study participation or investigational product administration or
may interfere with the interpretation of study results and, in the judgment of the
investigator, would make the subject inappropriate for entry into this study.

15. Has a psychiatric, addictive or other disorder that compromises the ability to give
informed consent for participating in this study. This includes subjects with a recent
history of abusing alcohol or illicit drugs 1 month (30 days) prior to study
Baseline/Day 1 of the AIR001-CS05 study and for the duration of the study.

16. Is currently pregnant or breastfeeding or intends to become pregnant during the
duration of the study.

17. Investigators, study staff or their immediate families.

Study design
Purpose of the study
Treatment
Allocation to intervention
Non-randomised trial
Procedure for enrolling a subject and allocating the treatment (allocation concealment procedures)
Methods used to generate the sequence in which subjects will be randomised (sequence generation)
Masking / blinding
Open (masking not used)
Who is / are masked / blinded?



Intervention assignment
Parallel
Other design features
Phase
Phase 2
Type of endpoint/s
Statistical methods / analysis

Recruitment
Recruitment status
Terminated
Data analysis
Reason for early stopping/withdrawal
Other reasons
Date of first participant enrolment
Anticipated
Actual
Date of last participant enrolment
Anticipated
Actual
Date of last data collection
Anticipated
Actual
Sample size
Target
Accrual to date
Final
Recruitment in Australia
Recruitment state(s)
NSW,QLD,TAS,VIC
Recruitment hospital [1] 0 0
St. Vincent's Hospital - Darlinghurst
Recruitment hospital [2] 0 0
The Prince Charles Hospital - Chermside
Recruitment hospital [3] 0 0
Royal Hobart Hospital - Hobart
Recruitment hospital [4] 0 0
The Alfred Hospital - Melbourne
Recruitment postcode(s) [1] 0 0
2010 - Darlinghurst
Recruitment postcode(s) [2] 0 0
4032 - Chermside
Recruitment postcode(s) [3] 0 0
7000 - Hobart
Recruitment postcode(s) [4] 0 0
3004 - Melbourne
Recruitment outside Australia
Country [1] 0 0
United States of America
State/province [1] 0 0
California
Country [2] 0 0
United States of America
State/province [2] 0 0
Colorado
Country [3] 0 0
United States of America
State/province [3] 0 0
Kentucky
Country [4] 0 0
United States of America
State/province [4] 0 0
Maryland
Country [5] 0 0
United States of America
State/province [5] 0 0
Massachusetts
Country [6] 0 0
United States of America
State/province [6] 0 0
Missouri
Country [7] 0 0
United States of America
State/province [7] 0 0
North Carolina
Country [8] 0 0
United States of America
State/province [8] 0 0
Ohio
Country [9] 0 0
United States of America
State/province [9] 0 0
Pennsylvania
Country [10] 0 0
United States of America
State/province [10] 0 0
Texas
Country [11] 0 0
United States of America
State/province [11] 0 0
Virginia
Country [12] 0 0
United States of America
State/province [12] 0 0
Wisconsin
Country [13] 0 0
Hungary
State/province [13] 0 0
Budapest
Country [14] 0 0
Hungary
State/province [14] 0 0
Debrecen
Country [15] 0 0
Hungary
State/province [15] 0 0
Szeged

Funding & Sponsors
Primary sponsor type
Commercial sector/Industry
Name
Aires Pharmaceuticals, Inc.
Address
Country

Ethics approval
Ethics application status

Summary
Brief summary
The AIR001-CS05 study evaluated the safety and efficacy (effectiveness) of AIR001 over 16
weeks in subjects who have PAH. The purpose of the AIR001-CS06 study is to evaluate the
intermediate / long-term safety of AIR001 in subjects who have completed the AIR001-CS05
study. Assessments to evaluate the effectiveness of the study drug will include measurements
of exercise ability and evaluations of PAH disease symptoms.
Trial website
https://clinicaltrials.gov/ct2/show/NCT01725269
Trial related presentations / publications
Ahanchi SS, Tsihlis ND, Kibbe MR. The role of nitric oxide in the pathophysiology of intimal hyperplasia. J Vasc Surg. 2007 Jun;45 Suppl A:A64-73. doi: 10.1016/j.jvs.2007.02.027.
Zuckerbraun BS, George P, Gladwin MT. Nitrite in pulmonary arterial hypertension: therapeutic avenues in the setting of dysregulated arginine/nitric oxide synthase signalling. Cardiovasc Res. 2011 Feb 15;89(3):542-52. doi: 10.1093/cvr/cvq370. Epub 2010 Dec 22.
Williamson DJ, Wallman LL, Jones R, Keogh AM, Scroope F, Penny R, Weber C, Macdonald PS. Hemodynamic effects of Bosentan, an endothelin receptor antagonist, in patients with pulmonary hypertension. Circulation. 2000 Jul 25;102(4):411-8. doi: 10.1161/01.cir.102.4.411.
Alef MJ, Vallabhaneni R, Carchman E, Morris SM Jr, Shiva S, Wang Y, Kelley EE, Tarpey MM, Gladwin MT, Tzeng E, Zuckerbraun BS. Nitrite-generated NO circumvents dysregulated arginine/NOS signaling to protect against intimal hyperplasia in Sprague-Dawley rats. J Clin Invest. 2011 Apr;121(4):1646-56. doi: 10.1172/JCI44079. Epub 2011 Mar 23.
ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002 Jul 1;166(1):111-7. doi: 10.1164/ajrccm.166.1.at1102. No abstract available. Erratum In: Am J Respir Crit Care Med. 2016 May 15;193(10):1185.
Badesch DB, Champion HC, Gomez Sanchez MA, Hoeper MM, Loyd JE, Manes A, McGoon M, Naeije R, Olschewski H, Oudiz RJ, Torbicki A. Diagnosis and assessment of pulmonary arterial hypertension. J Am Coll Cardiol. 2009 Jun 30;54(1 Suppl):S55-S66. doi: 10.1016/j.jacc.2009.04.011.
Bailey SJ, Winyard P, Vanhatalo A, Blackwell JR, Dimenna FJ, Wilkerson DP, Tarr J, Benjamin N, Jones AM. Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. J Appl Physiol (1985). 2009 Oct;107(4):1144-55. doi: 10.1152/japplphysiol.00722.2009. Epub 2009 Aug 6.
Barbosa PB, Ferreira EM, Arakaki JS, Takara LS, Moura J, Nascimento RB, Nery LE, Neder JA. Kinetics of skeletal muscle O2 delivery and utilization at the onset of heavy-intensity exercise in pulmonary arterial hypertension. Eur J Appl Physiol. 2011 Aug;111(8):1851-61. doi: 10.1007/s00421-010-1799-6. Epub 2011 Jan 12.
Battistini B, Berthiaume N, Kelland NF, Webb DJ, Kohan DE. Profile of past and current clinical trials involving endothelin receptor antagonists: the novel "-sentan" class of drug. Exp Biol Med (Maywood). 2006 Jun;231(6):653-95.
Battle RW, Davitt MA, Cooper SM, Buckley LM, Leib ES, Beglin PA, Tischler MD. Prevalence of pulmonary hypertension in limited and diffuse scleroderma. Chest. 1996 Dec;110(6):1515-9. doi: 10.1378/chest.110.6.1515.
Chaouat A, Bugnet AS, Kadaoui N, Schott R, Enache I, Ducolone A, Ehrhart M, Kessler R, Weitzenblum E. Severe pulmonary hypertension and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2005 Jul 15;172(2):189-94. doi: 10.1164/rccm.200401-006OC. Epub 2005 Apr 14.
Clozel M, Breu V, Gray GA, Kalina B, Loffler BM, Burri K, Cassal JM, Hirth G, Muller M, Neidhart W, et al. Pharmacological characterization of bosentan, a new potent orally active nonpeptide endothelin receptor antagonist. J Pharmacol Exp Ther. 1994 Jul;270(1):228-35.
Farber HW, Loscalzo J. Pulmonary arterial hypertension. N Engl J Med. 2004 Oct 14;351(16):1655-65. doi: 10.1056/NEJMra035488. No abstract available.
Task Force for Diagnosis and Treatment of Pulmonary Hypertension of European Society of Cardiology (ESC); European Respiratory Society (ERS); International Society of Heart and Lung Transplantation (ISHLT); Galie N, Hoeper MM, Humbert M, Torbicki A, Vachiery JL, Barbera JA, Beghetti M, Corris P, Gaine S, Gibbs JS, Gomez-Sanchez MA, Jondeau G, Klepetko W, Opitz C, Peacock A, Rubin L, Zellweger M, Simonneau G. Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J. 2009 Dec;34(6):1219-63. doi: 10.1183/09031936.00139009. Epub 2009 Sep 12. No abstract available.
Ghofrani HA, Barst RJ, Benza RL, Champion HC, Fagan KA, Grimminger F, Humbert M, Simonneau G, Stewart DJ, Ventura C, Rubin LJ. Future perspectives for the treatment of pulmonary arterial hypertension. J Am Coll Cardiol. 2009 Jun 30;54(1 Suppl):S108-S117. doi: 10.1016/j.jacc.2009.04.014.
Giaid A, Saleh D. Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N Engl J Med. 1995 Jul 27;333(4):214-21. doi: 10.1056/NEJM199507273330403.
Gielis JF, Lin JY, Wingler K, Van Schil PE, Schmidt HH, Moens AL. Pathogenetic role of eNOS uncoupling in cardiopulmonary disorders. Free Radic Biol Med. 2011 Apr 1;50(7):765-76. doi: 10.1016/j.freeradbiomed.2010.12.018. Epub 2010 Dec 21.
Gladwin MT, Raat NJ, Shiva S, Dezfulian C, Hogg N, Kim-Shapiro DB, Patel RP. Nitrite as a vascular endocrine nitric oxide reservoir that contributes to hypoxic signaling, cytoprotection, and vasodilation. Am J Physiol Heart Circ Physiol. 2006 Nov;291(5):H2026-35. doi: 10.1152/ajpheart.00407.2006. Epub 2006 Jun 23.
Gladwin MT, Vichinsky E. Pulmonary complications of sickle cell disease. N Engl J Med. 2008 Nov 20;359(21):2254-65. doi: 10.1056/NEJMra0804411. No abstract available.
Hassoun PM, Mouthon L, Barbera JA, Eddahibi S, Flores SC, Grimminger F, Jones PL, Maitland ML, Michelakis ED, Morrell NW, Newman JH, Rabinovitch M, Schermuly R, Stenmark KR, Voelkel NF, Yuan JX, Humbert M. Inflammation, growth factors, and pulmonary vascular remodeling. J Am Coll Cardiol. 2009 Jun 30;54(1 Suppl):S10-S19. doi: 10.1016/j.jacc.2009.04.006.
Humbert M, Morrell NW, Archer SL, Stenmark KR, MacLean MR, Lang IM, Christman BW, Weir EK, Eickelberg O, Voelkel NF, Rabinovitch M. Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol. 2004 Jun 16;43(12 Suppl S):13S-24S. doi: 10.1016/j.jacc.2004.02.029.
Humbert M, Sitbon O, Simonneau G. Treatment of pulmonary arterial hypertension. N Engl J Med. 2004 Sep 30;351(14):1425-36. doi: 10.1056/NEJMra040291. No abstract available.
Hunter CJ, Dejam A, Blood AB, Shields H, Kim-Shapiro DB, Machado RF, Tarekegn S, Mulla N, Hopper AO, Schechter AN, Power GG, Gladwin MT. Inhaled nebulized nitrite is a hypoxia-sensitive NO-dependent selective pulmonary vasodilator. Nat Med. 2004 Oct;10(10):1122-7. doi: 10.1038/nm1109. Epub 2004 Sep 12.
Kiowski W, Sutsch G, Hunziker P, Muller P, Kim J, Oechslin E, Schmitt R, Jones R, Bertel O. Evidence for endothelin-1-mediated vasoconstriction in severe chronic heart failure. Lancet. 1995 Sep 16;346(8977):732-6. doi: 10.1016/s0140-6736(95)91504-4.
Krowka MJ, Swanson KL, Frantz RP, McGoon MD, Wiesner RH. Portopulmonary hypertension: Results from a 10-year screening algorithm. Hepatology. 2006 Dec;44(6):1502-10. doi: 10.1002/hep.21431.
Lansley KE, Winyard PG, Bailey SJ, Vanhatalo A, Wilkerson DP, Blackwell JR, Gilchrist M, Benjamin N, Jones AM. Acute dietary nitrate supplementation improves cycling time trial performance. Med Sci Sports Exerc. 2011 Jun;43(6):1125-31. doi: 10.1249/MSS.0b013e31821597b4.
Larsen FJ, Weitzberg E, Lundberg JO, Ekblom B. Effects of dietary nitrate on oxygen cost during exercise. Acta Physiol (Oxf). 2007 Sep;191(1):59-66. doi: 10.1111/j.1748-1716.2007.01713.x. Epub 2007 Jul 17.
Larsen FJ, Weitzberg E, Lundberg JO, Ekblom B. Dietary nitrate reduces maximal oxygen consumption while maintaining work performance in maximal exercise. Free Radic Biol Med. 2010 Jan 15;48(2):342-7. doi: 10.1016/j.freeradbiomed.2009.11.006. Epub 2009 Nov 12.
Larsen FJ, Schiffer TA, Borniquel S, Sahlin K, Ekblom B, Lundberg JO, Weitzberg E. Dietary inorganic nitrate improves mitochondrial efficiency in humans. Cell Metab. 2011 Feb 2;13(2):149-59. doi: 10.1016/j.cmet.2011.01.004.
Mainguy V, Maltais F, Saey D, Gagnon P, Martel S, Simon M, Provencher S. Peripheral muscle dysfunction in idiopathic pulmonary arterial hypertension. Thorax. 2010 Feb;65(2):113-7. doi: 10.1136/thx.2009.117168. Epub 2009 Aug 30.
McLaughlin VV, Archer SL, Badesch DB, Barst RJ, Farber HW, Lindner JR, Mathier MA, McGoon MD, Park MH, Rosenson RS, Rubin LJ, Tapson VF, Varga J; American College of Cardiology Foundation Task Force on Expert Consensus Documents; American Heart Association; American College of Chest Physicians; American Thoracic Society, Inc; Pulmonary Hypertension Association. ACCF/AHA 2009 expert consensus document on pulmonary hypertension a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association. J Am Coll Cardiol. 2009 Apr 28;53(17):1573-619. doi: 10.1016/j.jacc.2009.01.004. No abstract available.
Mehta NJ, Khan IA, Mehta RN, Sepkowitz DA. HIV-Related pulmonary hypertension: analytic review of 131 cases. Chest. 2000 Oct;118(4):1133-41. doi: 10.1378/chest.118.4.1133.
Morrell NW, Adnot S, Archer SL, Dupuis J, Lloyd Jones P, MacLean MR, McMurtry IF, Stenmark KR, Thistlethwaite PA, Weissmann N, Yuan JX, Weir EK. Cellular and molecular basis of pulmonary arterial hypertension. J Am Coll Cardiol. 2009 Jun 30;54(1 Suppl):S20-S31. doi: 10.1016/j.jacc.2009.04.018.
Mukerjee D, St George D, Coleiro B, Knight C, Denton CP, Davar J, Black CM, Coghlan JG. Prevalence and outcome in systemic sclerosis associated pulmonary arterial hypertension: application of a registry approach. Ann Rheum Dis. 2003 Nov;62(11):1088-93. doi: 10.1136/ard.62.11.1088.
Opravil M, Pechere M, Speich R, Joller-Jemelka HI, Jenni R, Russi EW, Hirschel B, Luthy R. HIV-associated primary pulmonary hypertension. A case control study. Swiss HIV Cohort Study. Am J Respir Crit Care Med. 1997 Mar;155(3):990-5. doi: 10.1164/ajrccm.155.3.9117037.
Piazza G, Goldhaber SZ. Chronic thromboembolic pulmonary hypertension. N Engl J Med. 2011 Jan 27;364(4):351-60. doi: 10.1056/NEJMra0910203. No abstract available.
Ranque B, Authier FJ, Berezne A, Guillevin L, Mouthon L. Systemic sclerosis-associated myopathy. Ann N Y Acad Sci. 2007 Jun;1108:268-82. doi: 10.1196/annals.1422.029.
Rubin LJ; American College of Chest Physicians. Diagnosis and management of pulmonary arterial hypertension: ACCP evidence-based clinical practice guidelines. Chest. 2004 Jul;126(1 Suppl):7S-10S. doi: 10.1378/chest.126.1_suppl.7S. No abstract available.
Shorr AF, Helman DL, Davies DB, Nathan SD. Pulmonary hypertension in advanced sarcoidosis: epidemiology and clinical characteristics. Eur Respir J. 2005 May;25(5):783-8. doi: 10.1183/09031936.05.00083404.
Simonneau G, Robbins IM, Beghetti M, Channick RN, Delcroix M, Denton CP, Elliott CG, Gaine SP, Gladwin MT, Jing ZC, Krowka MJ, Langleben D, Nakanishi N, Souza R. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2009 Jun 30;54(1 Suppl):S43-S54. doi: 10.1016/j.jacc.2009.04.012.
Sitbon O, Lascoux-Combe C, Delfraissy JF, Yeni PG, Raffi F, De Zuttere D, Gressin V, Clerson P, Sereni D, Simonneau G. Prevalence of HIV-related pulmonary arterial hypertension in the current antiretroviral therapy era. Am J Respir Crit Care Med. 2008 Jan 1;177(1):108-13. doi: 10.1164/rccm.200704-541OC. Epub 2007 Oct 11.
Smith AP, Demoncheaux EA, Higenbottam TW. Nitric oxide gas decreases endothelin-1 mRNA in cultured pulmonary artery endothelial cells. Nitric Oxide. 2002 Mar;6(2):153-9. doi: 10.1006/niox.2001.0400.
Souza R, Humbert M, Sztrymf B, Jais X, Yaici A, Le Pavec J, Parent F, Herve P, Soubrier F, Sitbon O, Simonneau G. Pulmonary arterial hypertension associated with fenfluramine exposure: report of 109 cases. Eur Respir J. 2008 Feb;31(2):343-8. doi: 10.1183/09031936.00104807. Epub 2007 Oct 24. Erratum In: Eur Respir J. 2008 Apr;31(4):912.
Tsihlis ND, Oustwani CS, Vavra AK, Jiang Q, Keefer LK, Kibbe MR. Nitric oxide inhibits vascular smooth muscle cell proliferation and neointimal hyperplasia by increasing the ubiquitination and degradation of UbcH10. Cell Biochem Biophys. 2011 Jun;60(1-2):89-97. doi: 10.1007/s12013-011-9179-3.
Uhlmann D, Ludwig S, Escher E, Armann B, Gabel G, Teupser D, Tannapfel A, Hauss J, Witzigmann H. Protective effect of a selective endothelin a receptor antagonist (BSF 208075) on graft pancreatitis in pig pancreas transplantation. Transplant Proc. 2001 Nov-Dec;33(7-8):3732-4. doi: 10.1016/s0041-1345(01)02523-4. No abstract available.
Weber C, Schmitt R, Birnboeck H, Hopfgartner G, van Marle SP, Peeters PA, Jonkman JH, Jones CR. Pharmacokinetics and pharmacodynamics of the endothelin-receptor antagonist bosentan in healthy human subjects. Clin Pharmacol Ther. 1996 Aug;60(2):124-37. doi: 10.1016/S0009-9236(96)90127-7.
Weitzenblum E, Chaouat A. Severe pulmonary hypertension in COPD: is it a distinct disease? Chest. 2005 May;127(5):1480-2. doi: 10.1378/chest.127.5.1480. No abstract available.
Hassoun, PM. Pulmonary arterial hypertension complicating connective tissue disease. In: Humbert M., Lynch JP, Eds. Pulmonary Hypertension. New York: Informa Healthcare USA, Inc. 2010: 161-175.
Levi, DS, Scott, V, Aboulhosn J. Pulmonary arterial hypertension in congenital heart disease. In: Humbert, M, Lynch, JP, Eds. Pulmonary Hypertension. New York: Informa Healthcare USA, Inc. 2010: 176-195.
Rubin LJ. Primary pulmonary hypertension. N Engl J Med. 1997 Jan 9;336(2):111-7. doi: 10.1056/NEJM199701093360207. No abstract available.
Shiva S. Mitochondria as metabolizers and targets of nitrite. Nitric Oxide. 2010 Feb 15;22(2):64-74. doi: 10.1016/j.niox.2009.09.002. Epub 2009 Sep 27.
Ware, JE et al. How to Score Version Two of the SF-36 Health Survey. Lincoln, RI: QualityMetric, Incorporated, 2000.
Public notes

Contacts
Principal investigator
Name 0 0
Adaani E Frost, M.D.
Address 0 0
Baylor College of Medicine, Houston
Country 0 0
Phone 0 0
Fax 0 0
Email 0 0
Contact person for public queries
Name 0 0
Address 0 0
Country 0 0
Phone 0 0
Fax 0 0
Email 0 0
Contact person for scientific queries



Summary Results

For IPD and results data, please see https://clinicaltrials.gov/ct2/show/NCT01725269