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Background and Rationale 

The objective of this trial is to evaluate whether imagery-enhanced cognitive 

behavioural group therapy (IE-CBGT) is superior to standard verbally-based cognitive 

behavioural group therapy (VB-CBGT) for the treatment of social anxiety disorder (SAD). 

The study protocol is described in McEvoy et al. (2017). 

To improve the reproducibility, transparency, and validity of clinical trial analyses, it 

has been recommended that clinical trialists create a statistical analysis plan (SAP; Gamble et 

al., 2017; Yuan et al., 2019). The SAP is intended to complement the trial protocol. 

According to Gamble et al. (2017), a SAP should contain a more technical and detailed 

elaboration of the main features of the trial analyses. We have followed this recommendation 

in preparing this SAP, and further adhered to guidelines about the content of SAPs described 

in Gamble et al. (2017) and Yuan et al. (2019). 

The current plan has been prepared during August and October 2019, prior to the data 

being made available. The final follow-up data for the last treatment cohort will be collected 

in November 2019. All trial data was blinded and not collated at the time of writing this 

analytic plan. Treatment condition will remain masked to the data analyst until after the 

analyses described in this SAP have been conducted. The present analysis plan will be time-

stamped and made publicly-available. 

Some of the proposed analyses deviate from those described in the protocol paper 

(McEvoy et al., 2017). The main reason is to better comply with best-practices in the analysis 

of clinical trial data, some of which have changed since the trial was registered and protocol 

published (Mallinckrodt & Lipkovich, 2017). We will also be taking advantage of improved 

analytic techniques and software that have been developed during the study’s data collection 

period. Recent reanalysis of data collected in pilot studies (prior to the RCT) has also 

informed the feasibility of different planned analytic approaches (Erceg-Hurn & McEvoy, 

2018; McEvoy, Erceg-Hurn, Saulsman, & Thibodeau, 2015; McEvoy & Saulsman, 2014). 

The analyses in this SAP supersede those described in McEvoy et al. (2017). 

Trial Design, Methods, and Selection of Outcomes 

A comprehensive overview of the trial design, eligibility criteria, randomisation 

schedule, sample size, outcomes, and measurement schedule can be found in McEvoy et al. 

(2017). Therefore, that information is not repeated in depth here. 
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In short, the study is a superiority trial that aimed to randomise at least 96 individuals 

with social anxiety-disorder to one of two 12-week group treatments for SAD (IE-GCBT and 

VB-GCBT). There is also a one-month follow up group review session. Over 20 outcome 

measures have been collected at various times before, during, and after treatment. The 

primary endpoint is the one month follow up (i.e., coinciding with the follow up group review 

session). This was selected on the basis of pilot data which showed differences between the 

treatments are larger at one-month follow up than at the end of weekly treatment sessions 

(McEvoy et al., 2015). No interim analyses or stopping rules were planned, nor have any 

been used. 

The primary hypotheses are that, at the one-month follow up, IE-GCBT will be 

superior to VB-GCBT in terms of (a) reduction in severity of self-reported social anxiety 

symptoms (b) percentage of individuals with a SAD diagnosis (c) reduction in clinician-rated 

severity of social anxiety symptoms. McEvoy et al. (2017) also describe a wide range of 

additional hypotheses concerning secondary outcome measures, mechanisms of change, and 

moderation. Given the numerous outcomes and possible research questions, it is not possible 

to comprehensively report them all in a single paper. Therefore, they will be addressed across 

several publications. 

In the first paper, we will report measures related to the primary hypotheses and key 

secondary hypotheses (see Table 1). The first three outcomes (self-reported SAD severity, 

diagnostic status, and clinician-rated severity) were selected in order to test the primary 

hypotheses. The remaining measures were selected because we judged them to be the most 

important secondary outcomes. Fear of negative evaluation is a mechanism proposed to 

underly SAD, thus it is relevant to evaluate whether IE-GCBT is superior to VB-GCBT in 

changing this mechanism. Similarly, in the treatment clinic where the trial is being 

conducted, SAD is often comorbid with major depression and generalised anxiety disorder. 

Therefore, it is meaningful to evaluate whether the treatments differ in their impact on the 

severity of symptoms of these comorbid conditions. Additional research questions and 

outcomes (e.g., moderators and predictors of change, health economic outcomes, and 

psychophysiological parameters) will be reported in subsequent papers. The remainder of this 

SAP describes how the variables that will be reported in the main outcomes paper will be 

analysed. 
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Table 1 

Outcomes to be Reporting in the First Paper 

Construct Measure 

Primary Outcomes 
 

Severity of social interaction anxiety (self-report) Social Interaction Anxiety Scale (SIAS) 

Presence or absence of SAD diagnosis (clinician-rated) SCID-5 SAD diagnostic status 

Severity of SAD diagnosis (clinician-rated) Clinician-rated severity scale 

  

Secondary outcomes 
 

Severity of social performance anxiety Social Phobia Scale (SPS) 

Severity of fear of negative evaluation Brief Fear of Negative Evaluation - Straightforwardly Worded (BFNE-S) 

Severity of fear of positive evaluation Fear of Positive Evaluation Scale (FPE) 

Severity of general anxiety PROMIS Anxiety - Form 8A 

Severity of depression PROMIS Depression - Form 8A 

Reliable & clinically significant change in social 

interaction anxiety 
SIAS (categorised in accord with Jacobson & Truax, 1991) 
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Planned Reporting of Patient Characteristics and Measures 

CONSORT Flow Chart 

We will include a CONSORT flow chart showing the number of participants: 

• Screened for the study 

• Assessed 

• Randomised  

• Starting treatment 

• Providing follow-up data 

The chart will also show the reasons (where known) why participants did not meet trial 

eligibility criteria, discontinued treatment, and so on. 

Number of Sessions Completed 

As part of the CONSORT flow chart, we will report the number of randomised 

patients who commenced treatment. We will also report for each treatment arm: the mean 

number of treatment sessions completed and standard deviation. We will estimate the mean 

difference in the number of sessions completed, a 95% confidence interval for the difference, 

and a p-value computed using a Welch (unequal-variance) t-test. To ensure comparability 

with prior research (McEvoy et al., 2015), the number of sessions completed will be a 

number out of 13 (comprising the 12 weekly treatment sessions, and the one-month group 

follow-up session) and the denominator used for calculating the means will be the number of 

patients who started each treatment (as opposed to the number randomised). 

Reporting Baseline Patient Characteristics 

For each treatment arm (IE-GCBT and VB-GCBT) we will report the following 

characteristics at baseline: 

Demographic characteristics 

• Age 

• Gender  

• Highest level of education completed 

• Employment status 

• Relationship status 

• % born in Australia  
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• Cultural background 

Diagnostic Information 

• Age at onset of SAD diagnosis 

• Duration of current social anxiety episode 

• Clinician-rated severity of SAD diagnosis 

• % of cases diagnosed with performance-only SAD subtype 

• Number of comorbid diagnoses 

• Prevalence of the most common comorbid diagnoses 

Baseline Scores on Self-Report Outcome Variables 

• SIAS, SPS, BFNE, FPE, PROMIS Anxiety, PROMIS Depression 

Other Clinical Features 

• % who have previously received psychiatric treatment 

• % hospitalised for psychiatric problems 

• Concurrent use of psychotropic medications (defined as antidepressants, anxiolytics, 

antipsychotics, and mood stabilisers) 

For continuous variables with symmetric distributions we will report means and standard 

deviations. For skewed continuous variables we will report the 50th percentile (median) as an 

estimate of central tendency and the 25th and 75th percentiles to indicate variability. For 

categorical variables we will report the percentage of clients falling into each category. 

We will not include significance testing for differences between treatment arms in each 

baseline characteristic. Tests for significance differences at baseline when patients have been 

randomly allocated to groups is not substantively meaningful, and statisticians have strongly 

recommended against their use. For more details see Harvey (2018) and Senn (1995). 

Data Validity Checks 

 Prior to the exploration and analysis of the trial data, a series of checks will be 

performed to assess whether there are any systematic issues with the entry of data and 

subsequent calculation of composite scores for each scale. Firstly, a subset of the data entry 

for the SIAS at pre-treatment and at the 1-month follow-up will be independently audited to 

ensure that the ratings have been accurately entered. Secondly, the composite scores for each 

scale will be calculated independently by two members of the research team and assessed for 
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consistency. By taking these measures, we can ensure that neither the data entry or data 

processing introduces bias into the analysis. 

 Two clients will be excluded from analyses due to intentionally providing invalid 

responses to questionnaires.  The implausible responding was identified by the treating 

clinicians, who observed that the clients repeatedly provided invalid responses throughout the 

course of therapy.  Examples include repeatedly rating outside the maximum of a scale, 

continually using the same response option to rate every item in a scale; and wildly 

inconsistent responses from week to week to measures of the same construct.  The likely 

implausible responses were reviewed by a member of the research team (DEH) blind to 

treatment condition, who confirmed that they were consistent with invalid responding.  The 

scores will therefore be removed to prevent biasing both the imputation process and analysis. 

Reliability of Outcome Measures 

Diagnostic Reliability 

In order to assess the reliability of diagnoses, the SCID was re-evaluated by a second 

diagnostician in a random sample of approximately 20% of assessments across the baseline, 

1-month, and 6-month follow-ups. We will report the % of agreement and two indices of 

inter-rater reliability: Cohen’s Kappa and Gwet’s AC1. Two indices of inter-rater reliability 

will be used as Cohen’s Kappa can falsely return low values at very high levels of agreement 

(Gwet, 2008).  

Composite Reliability of Self-Report Outcome Measures 

We will report the reliability of multi-item self-report outcomes (SIAS, SPS, BFNE-S, 

FPE, PROMIS Depression and Anxiety) at the first assessment session. The index of 

reliability will be McDonald’s omega, which will be computed using the MBESS package in 

R (Kelley, 2019). Omega is a generalisation of Cronbach’s alpha that is a more theoretically 

appropriate index of reliability to use in the present study (Dunn, Baguley, & Brunsden, 

2014). This is because Cronbach’s alpha assumes all items in a scale have identical factor 

loadings while omega allows them to vary. In more technical terms, omega uses a congeneric 

measurement model whereas alpha assumes essential tau-equivalence. 

Omega reliability coefficients are appropriate for congeneric measures that were 

developed using classical test theory (CTT) and that are scored by summing or averaging the 

items. The PROMIS anxiety and depression scales were developed using item-response 
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theory (IRT) and use an IRT scoring scheme. We will nevertheless report omega reliabilities 

for these measures as an indicator of reliability under CTT assumptions. We will supplement 

the PROMIS reliability coefficients with additional information about the typical standard 

error of PROMIS scores taken from the PROMIS scoring manuals, which are available from 

http://www.healthmeasures.net/promis-scoring-manuals 

Planned Exploration of Outcome Data Prior to Longitudinal Modelling 

Texts on longitudinal data analysis for clinical trials (e.g., Diggle, Heagerty, Liang, & 

Zeger, 2002) strongly recommend that data be explored using numeric and graphical 

summaries prior to conducting any longitudinal modelling (e.g., linear mixed-models). This 

helps to understand trends in the data, patterns of missing data, and identify potential 

problems or unanticipated effects. 

For each outcome measure, we will explore: 

• Marginal distributions (e.g., boxplots and histograms of the scores at each 

measurement occasion)  

• Marginal treatment trajectories (e.g., plot of the mean trajectories, computed by 

pooling data across patients at each measurement occasion) 

• Subject-specific trends (e.g., spaghetti plots) 

• Correlational structure (e.g., correlation matrix of scores at measurement occasion, 

with missing data handled using pairwise and/or listwise deletion) 

• Variance structure (e.g., estimate variance and SDs at each time point) 

• Missing data patterns (e.g., marginal trajectories stratified by dropout status) 

Trial Estimand and Missing Data 

Estimand 

In clinical trials, it is common that not all patients fully adhere to the prespecified 

treatment protocol (e.g., some patients may miss some treatment sessions). As a result, 

several different types of treatment effect can theoretically be estimated. These include the 

expected effect if all randomised participants had adhered or the treatment effect amongst 

only completers (among others, Mallinckrodt, Lin, Lipkovich, & Molenberghs, 2012). The 

estimand of an analysis refers to the type of conceptual effect that is being estimated 

(Mallinckrodt & Lipkovich, 2017). The present analyses will target the ‘de jure’ estimand, 

http://www.healthmeasures.net/promis-scoring-manuals


  Page 12 of 28 

which is the estimated treatment effect if all randomised individuals adhered to the treatment 

protocol. Mallinckrodt and Lipkovich (2017) recommend that analyses of the de jure 

estimand include (a) data from all randomised subjects, consistent with the intent-to-treat 

principle, and (b) all outcome data collected up to the point that a patient became non-

adherent. In the present analyses, non-adherence will be defined as missing more than two 

consecutive treatment sessions. This means that analyses will utilise all data collected from 

all randomised subjects up until the point they became non-adherent (in contrast to a 

completer analysis, which uses data from only a subset of the randomised participants). Other 

estimands (e.g., de facto estimands) will be reported in subsequent papers. For more about 

estimands and their implications for data analysis, see Mallinckrodt et al. (2012). 

Missing Data 

 Traditionally, there are three primary approaches to accounting for missing data in 

clinical trial analyses: listwise deletion, multiple imputation, and full-information maximum 

likelihood (also referred to as ‘direct maximum-likelihood’; National Research Council Panel 

on Handling Missing Data in Clinical Trials, 2011). Listwise deletion of cases with missing 

responses can strongly reduce power and risk introducing bias (National Research Council 

Panel on Handling Missing Data in Clinical Trials, 2011). Multiple imputation (MI) and full 

information maximum-likelihood (FIML) will give asymptotically equivalent results with 

missingness (i.e. results will be the same as the sample size tends to infinity; McNeish, 2017). 

However, FIML can return biased estimates with small sample sizes that depart from 

normality (McNeish, 2017). Given the sample size available in the present study, multiple 

imputation will be used. Multiple imputation may also be advantageous in the present study 

because there are many measures that could be used as auxiliary variables (i.e., additional 

predictors of the missing data). This may help to reduce bias and increase the efficiency of 

the analysis, compared to using FIML. 

Multiple Imputation 

The key steps in generating a multiply imputed dataset that can be used for analysis 

are: (a) exploring the missing data (b) determining what variables to select as predictors in 

the imputation model (c) imputing the data, and (d) checking the imputations (White, 

Royston, & Wood, 2011). We will employ current best-practices in implementing these steps, 

as discussed in van Buuren (2018), White et al. (2011), and Templ and Filzmoser (2008). 
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Imputation Model 

In order to fill in the missing values (step c above), the analyst must specify an 

imputation model comprising variables in the dataset that are used to help generate the 

imputed values. At a minimum, the imputation model will include all variables in the analysis 

model (e.g., treatment condition, scores on the same variable at prior time points, and 

interactions between them). The imputation model may also include predictors of dropout, 

and auxiliary variables that help improve the precision of the imputations, which is consistent 

with best practice in the imputation literature (White et al., 2011). The exact form of the 

imputation model will depend on which variables in the dataset (if any) are predictive the 

presence of missing data, and the strength of associations between the outcome(s) being 

imputed and the other variables in the dataset. 

Imputation Software and Settings 

 We will use the multiple imputation by chained equations approach to multiple 

imputation, as implemented in the R package mice (van Buuren, 2018). The default mice 

imputation algorithm, predictive mean matching (PMM), will be used to multiply impute the 

missing data. PMM was selected because of its performance in simulation studies with both 

normal and skewed data (Marshall, Altman, & Holder, 2010; Marshall, Altman, Royston, & 

Holder, 2010). If problems are encountered with convergence, or the plausibility of the 

imputations, we will attempt to address these by either (i) increasing the number of iterations, 

(ii) adjusting the imputation model, or (iii) using an alternative imputation method. 

We will use 100 imputations, as using a relatively large number of imputations (e.g., 

100 rather than 5) reduces between-imputation variance (van Buuren, 2018). In practice, this 

means parameter estimates are more precise. 

Pooling Results 

The primary end point in the study is the one-month group follow up. We will 

therefore construct a contrast where we generate an estimate of the difference between groups 

(e.g., difference in means) and standard error at the one-month follow-up for each outcome 

under study. For each outcome, the 100 estimates and 100 standard errors will then be 

combined using the standard multiple imputation pooling procedure, known as Rubin’s Rules 

(van Buuren, 2018). These pooled estimates and standard errors will then be used to assess 

the magnitude (and significance) of the difference in outcomes between treatments. 
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Confirmatory Longitudinal Analyses 

 We will now describe how each imputed dataset will be analysed. The choice of 

analytical approach was determined by both the type of measurement of the outcome (e.g., 

binary or continuous) and the number of repeated assessments (i.e., number times that these 

outcomes were measured). These attributes for the outcomes are summarised in Table 1. See 

the trial protocol paper for more information about outcomes in the trial and their 

measurement properties (McEvoy et al., 2017). 

Table 1 

Measurement Properties and Repeat Assessments for Outcomes under Analysis 

Outcome Type of Measurement 
Number of Measurements 

Baseline Post-Baseline 

Primary    

SIAS Continuous 2 5 

SCID-5 Diagnostic Status Binary 1 2 

Clinician Rated Severity Ordinal (Ranges 0 – 8) 1 2 

    

Secondary    

SPS Continuous 1 5 

BFNE-S Continuous 1 13 

FPE Continuous 1 13 

PROMIS Anxiety Continuous 2 13 

PROMIS Depression Continuous 2 13 

 

All outcomes aside from SCID-5 diagnostic status, clinician-rated severity, and 

reliable and clinically-significant change will be analysed using Linear Mixed Models 

(LMM), as implemented in the R package nlme (Pinheiro, Bates, DebRoy, Sarkar, & R Core 

Team, 2019). There are some aspects of these analyses that will be the same for all outcomes 

and some that will differ depending on the number of measurement times for each outcome. 

The analytical decisions that are the same for all outcomes will be described first, followed 

by separate sections detailing the decisions individual to each analysis. A summary of the 

analyses and parameterizations of each is presented at the end. 
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Accounting for Nesting Within Group 

As treatments are delivered in a group setting, a random intercept for ‘group’ will be 

included in all models. The random intercept allows for the responses of individuals within 

the same group to be correlated with each other. However, in our analyses of pilot data we 

have found that the variance of the random intercept is often close to zero (indicating little 

difference between groups). This may be because the treatment protocol is standardised to 

minimise differences between groups, and outcome largely depends on whether participants 

complete homework tasks between sessions, which do not overlap with other participants. 

Some outcomes in the present trial will also be measured after patients have been apart for a 

long time (i.e., the 1 and 6-month follow ups). The random intercept variance has been so 

small in analyses of some pilot data that it has caused problems with model convergence. 

Therefore, if in analyses of trial data, the model with a random intercept for group 

demonstrates issues with convergence or the random effect has a variance near zero, the 

random intercept will be removed.  

Modelling of Baseline Measurements 

Scores collected at baseline could be modelled as a covariate, or as part of the 

response vector (Mallinckrodt & Lipkovich, 2017). Clinical trial statisticians (e.g., Harrell, 

2015; Senn, 2008) often recommend that the baselines be included as a covariate, as this can 

increase power. Baseline scores may also have a different distribution to responses at other 

times, which can make joint modelling of the baseline and post-baseline outcomes 

problematic (Mallinckrodt & Lipkovich, 2017). In the present RCT, baseline score and its 

interaction with time will be included as a covariate in the fixed effects part of the LMM. 

For some outcomes (SIAS, PROMIS-Anxiety, PROMIS-Depression) there are two 

baseline measurements. These were taken at the initial assessment session, and again 

immediately prior to the first treatment session. The amount of time between the two baseline 

measurements is usually short. In analyses of our pilot data we have found the two baseline 

measurements are strongly correlated, and the mean change between the two assessments is 

near zero. In these situations, Senn (2008) recommends that the mean of the two baseline 

measurements be used as a covariate. This is because the mean baseline value is subject to 

less measurement error than either the individual baselines, the mean baseline is likely to be 

more strongly correlated with the post-baseline measurements, and it takes fewer parameters 

to model the mean baseline compared to including both baselines in the model. For the 
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measures with two baselines, we will follow Senn (2008)’s recommendation to use the mean 

of the multiple baselines as a fixed covariate. 

Continuous Outcomes with 5 Post-Baseline Measurements (SIAS & SPS) 

 The SIAS and SPS have five post-baseline measurements (weeks 4, 8, and 12, and at 

the 1-month and 6-month follow-ups). Modelling time as a continuous linear covariate would 

not be appropriate for the present trial as this assumes the amount of change between each 

week is the same (Mallinckrodt & Lipkovich, 2017). This is implausible as our pilot data 

indicate that during weekly treatment there is a rapid improvement in symptoms whereas 

change over the one-month follow up period is more modest. We also expect that the mean 

change per week between the one- and six-month follow-ups will be different to the mean 

change per week during weekly treatment, or over the one-month follow up period. 

Therefore, time will be modelled as a categorical variable. Entering time into the model as a 

categorical covariate allows the slope of the mean trajectory between each measurement 

occasion to vary. 

 To account for the correlations between the repeated observations of the same 

individual an unstructured covariance matrix for the residuals will be used. Using an 

unstructured matrix allows for both the variance in residuals at each assessment time, and the 

covariance in residuals between times, to be different. This approach is recommended as it 

makes minimal assumptions about the structure of the covariance matrix, which helps prevent 

Type I errors (Lu & Mehrotra, 2010; Mallinckrodt & Lipkovich, 2017). 

Continuous Outcomes with 13 Post-Baseline Measurements (BFNE, FPE, PROMIS 

Anxiety & Depression) 

Treating time as a categorical variable and using an unstructured covariance matrix is 

a highly flexible approach that does not make any assumptions about the ‘form’ of change or 

the structure of the residuals throughout the trial. However, this approach is not feasible when 

the sample size is modest and there are many repeated assessments, as the sample size cannot 

support the large number of parameters that need to be estimated. 

An alternative to modelling time as a categorical variable is to model time as a 

piecewise linear spline. Where categorical time estimates the amount of change between the 

first post-baseline observation and each subsequent measurement (and how this differs 

between groups), piecewise time instead separates the trial into distinct ‘blocks’ of 
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assessments and estimates the change within those blocks. The piecewise approach has the 

benefit of not assuming that the amount of change is the same between every assessment in 

the trial while also requiring the estimation of fewer parameters than categorical time. In 

other words, it represents a compromise that sits between the two extremes of modelling 

time: very rigidly (with a single, continuous linear variable) or very flexibly (categorically).  

Whereas categorical time makes no assumptions about the form of change throughout 

the study, piecewise time requires the specification of the form of change within each of the 

assessment blocks. For the present analysis, the assessment period will be divided into three 

blocks: Session 2 to Session 12, Session 12 to 1-Month follow-up, 1-Month follow-up to 6-

Month follow-up. The analysis will be assuming that the changes within each of these blocks 

will be linear. However, this may not be appropriate for the first block (Session 1 to Session 

12) as individuals may change by different amounts throughout the trial. For example, 

individuals may see small amounts of benefit at the start of the trial, but larger amounts of 

benefit as treatment continues. To assess the appropriateness of a linear model of change for 

this block of assessments, plots of the model residuals at each assessment point will be 

inspected for systematic variation. If there is a systematic structure to the residuals (e.g., 

consistently larger at a given assessment or there appears to be some curvature), this would 

indicate that a linear model was not accurately capturing the changes in severity throughout 

the treatment sessions. If this is the case, the first block (Sessions 1-12) will be fitted with 

restricted cubic splines to represent the effects of time (Harrell, 2015).  

Similar to the categorical treatment of time, the use of an unstructured covariance 

matrix for the residuals allows for a great deal of flexibility at the cost of estimating more 

parameters. An unstructured matrix estimates the residual variance at every assessment time, 

as well as the covariance in residuals between every assessment time. This residual structure 

is not feasible for the outcomes with 13 post-baseline measurements. An alternative for these 

outcomes is the continuous first-order autoregressive structure (CAR1) with heterogenous 

variances (i.e., different variances for each timepoint). The CAR1 residual structure is used to 

account for the temporally-correlated nature of repeated measures data. The CAR1 structure 

assumes that the assessments completed closer together in time will be more strongly 

correlated than those conducted further apart. This is completed using a ‘decay’ parameter, 

which determines the strength of correlation between two assessments as a function of the 

distance in time between them. By using a CAR1 structure with heterogenous variances, the 
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analyses with outcomes measured at 13 assessments can account for the autocorrelated nature 

of the residuals without requiring the estimation of as many parameters as would be required 

with an unstructured matrix. Analyses of pilot data suggest using a heterogeneous CAR1 

structure to model the residual errors fits the data better than any of the other correlation 

structures available in R’s nlme package (Pinheiro et al., 2019). 

Binary Outcome with 2 Post-Baseline Measurements (SCID-5 Diagnosis) 

 As all individuals will have a diagnosis of SAD at the baseline assessment, no 

additional information is gained by including baseline diagnosis in the model. As such, the 

analysis of change in diagnostic status will only include the diagnoses at the 1-Month and 6-

Month follow-ups. To determine whether the proportion of individuals with a SAD diagnosis 

at the 1-Month and 6-Month follow-ups is significantly different between the treatment 

groups, a pooled test of the difference in proportions will be carried out. 

 For each of the imputed datasets, the proportion of individuals in each treatment arm 

(IE-CBGT & VB-CBGT) with a diagnosis of SAD, and the standard error of that proportion, 

will be estimated. The difference in proportions, as well as the standard error of that 

difference, will also be estimated. These estimated proportions and standard errors for each 

imputed dataset will then be pooled using Rubin’s Rules (van Buuren, 2018). These pooled 

results will give the percentage of individuals in each arm meeting diagnostic criteria at the 1-

Month and 6-Month follow-ups, the difference between the arms, confidence intervals for 

difference, and the significance of the difference. 

Ordinal Outcome with 2 Post-Baseline Measurements (Clinician-Rated Severity) 

 Because clinician-rated severity is an ordinal outcome (rated by category and the 

categories are ordered in severity) measured on multiple occasions, the analysis will use a 

cumulative-link mixed-effects model (CLMM) as implemented in the R package ‘ordinal’ 

(Christensen, 2019). The CLMM is an extension of the generalised linear mixed-model for 

use with ordinal data. Baseline severity will be included as a covariate and time will be 

entered as categorical. A random intercept for each group will be included, but as with the 

previous analyses will be removed if it shows little variance. To account for the correlation 

between one- and six-month follow up assessments, a random slope for patient will be used.  

 A key concern with the analysis of ordinal data is whether there are sufficient 

numbers of individuals at each of the rating categories. If there are only a small number of 
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individuals within a given severity rating, the estimated relationships could be easily 

influenced by outlying, or simply unrepresentative, responses. This is likely to be the case for 

the largest and smallest ratings of severity. If severity categories have low numbers of 

endorsements (< 5), those categories will be collapsed. 

 It should be noted that the CLMM relies on the assumption of proportional odds. This 

assumption implies that the effect of the covariates (e.g., treatment) are the same for every 

category. In other words, regardless of whether the individual has a high or low severity 

rating, their probability of changing category after receiving treatment is the same. If this is 

not the case, the resulting estimates of treatment effect are likely to be biased. An alternative 

is to estimate a different effect for each category. While this is more flexible, and does not 

assume proportional odds, it also requires estimating more parameters. The analysis of 

clinician-rated severity will first be carried out assuming proportional odds. The proportional 

odds assumption will then be evaluated. If there is a substantial departure from proportional 

odds for a given covariate, the analysis will be refitted with non-proportional odds for that 

covariate. 

Reliable and Clinically Significant Change (SIAS) 

 Beyond simply testing whether the amount of change in social anxiety symptoms is 

statistically significant, it is also of interest to examine whether those changes are: a) beyond 

what would be expected due to measurement error, and b) clinically meaningful. This is the 

examination of reliable and clinically significant change (RC and CSC, respectively) 

described by Jacobson and Truax (1991). The analyses will examine the RC and CSC of the 

SIAS using the multiply-imputed datasets. 

 The calculation of RC is defined as: 

 𝑅𝐶 =  
(SIASpos −  SIASpre)

√2 ∗ 𝑆𝐸2
 

 Where: 

𝑆𝐸 = 𝑆𝐷𝑝𝑟𝑒 ∗ √1 − 𝑟 

Where r is the reliability of the SIAS. For this analysis, the previously described 

McDonald’s Omega coefficient will be used as the estimate of the reliability of the SIAS. If 
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RC > 1.96, this indicates that the amount of change is greater than can be attributed to 

measurement error. 

 The criteria for having achieved CSC were the same as described in previous pilot 

research (McEvoy et al., 2015). Individuals were required to have scored above a severity 

cut-off before treatment, achieved RC, and subsequently scored below the cut-off after 

treatment. The severity cut-off was defined as the mid-point between the clinical and 

normative means reported by Carleton et al. (2014), which was 40.56 for the SIAS. 

To determine whether the proportions of individuals achieving reliable and/or 

clinically significant change significantly differed between treatment arms, a pooled test of 

the difference in proportions was carried out (the same procedure described for the analysis 

of diagnostic status). 

Contrasts for Continuous and Ordinal Outcomes 

The primary hypotheses are concerned with whether there are differences between the 

treatments at one month follow up. In order to determine this, for each continuous and ordinal 

outcome, the data from all the measurement occasions are jointly modelled using a LMM 

(rather than say, only using the one-month follow-up data in the analysis; see Mallinckrodt 

and Lipkovich (2017). We will then use contrast coefficients to (i) estimate the marginal 

means for each treatment at each measurement occasion, and (ii) compute the mean 

difference between treatments and a standard error at the one-month follow up time point. 

For continuous and ordinal outcomes, we will compute the contrasts using R’s emmeans 

package. For the ordinal outcome this contrast is an odds ratio, representing the difference in 

probability of belonging to a higher severity rating between the two treatment arms. 

Evolution of Outcomes Over Time 

A secondary goal of this paper is to understand how differences between the groups 

evolve over time. Analyses of pilot data suggest these tend to be smaller at post-treatment 

than at one-month follow up. We have no pilot data for the six-month follow up. Therefore, 

we will use additional contrasts to examine differences between the treatments at week 12 

(end of weekly treatment sessions) and the 6-month follow up. This will provide valuable 

information about the evolution of treatment outcomes before and after the primary endpoint. 
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Reporting of Results 

Analysis Code and Output 

 All analysis code and output will be uploaded to the Open Science Foundation.  This 

will ensure that all results are replicable, and that other scholars can easily extend our work.  

In the paper itself, we will summarise the key findings. 

Standardized Effect Size 

For continuous outcomes, we will convert the mean difference between groups into a 

standardised effect size by dividing the difference by the pooled pre-treatment standard 

deviation. We will also compute standardized within-group effect sizes, by subtracting the 

mean baseline score from each treatment’s estimated marginal mean at the one-month follow 

up and dividing by the pooled pre-treatment standard deviation. For binary outcomes, the 

difference in proportion is an effect size. For ordinal outcomes, the odds ratio is an effect 

size. 

Confidence Intervals 

For each outcome, we will report a 95% confidence interval for the difference 

between groups at one-month follow up. 

P-values 

There have recently been calls to reform or abandon significance testing (for more 

details, see a recent special issue of the American Statistical Association’s American 

Statistician journal here). In the present paper, we will report p-values continuously (e.g., p = 

.078) rather than just reporting whether they are less than or greater than .05. 

Multiplicity 

Due to the moderate sample size, there is a greater risk of Type II errors than Type I 

errors in the current trial. All hypotheses are also prespecified and the number of outcomes 

being analysed is limited. Therefore, no adjustment for multiplicity will be used. 

Diagnostic Checks, Sensitivity, and Alternative Analyses 

Model Assumptions 

The graphical ‘lineup’ procedure will be used to assess the model assumptions of residual 

normality and normality of random effects for the mixed-model analyses of continuous and 

https://www.tandfonline.com/toc/utas20/73/sup1
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ordinal outcomes. The lineup procedure involves creating a plot assessing a given model 

assumption (e.g., normality of residuals) from both the analytic model and from several 

simulated models where the assumption is met. If a blinded observer cannot distinguish the 

analytic model plot from the simulated model plots, then the assumption has been met (Loy, 

Hofmann, & Cook, 2017). Given that 100 multiply-imputed datasets were used in the 

analysis, it is not practical to check model assumptions using all of them. Rather, a single 

dataset will be randomly selected and used. The lineup plots will be generated by the data 

analyst and inspected by members of the research team that are blinded to the location of the 

analytic plot.  

The mixed-effect models for continuous outcomes will initially be estimated with a 

Gaussian distribution and an identity link (i.e., assuming a linear relationship). If the 

diagnostic lineup plots identify issues with residual non-normality, alternative robust methods 

will be evaluated. These methods include the use of a sandwich estimator with the LMM, 

such as that implemented in the R package clubSandwich (Pustejovsky, 2019). Alternatively, 

a generalised LMM with an appropriate distribution (e.g., gamma or inverse gaussian) could 

be used, such as those implemented in the R package glmmTMB (Brooks et al., 2017). A 

weighted generalised estimating equations (wGEE) model could be used, as implemented in 

the R package wgeesel (Xu, Li, & Wang, 2018). Finally, a two-stage analysis could also be 

used, as this has shown to be very robust to violations of distributional assumptions (Overall 

& Tonidandel, 2010; Senn, Stevens, & Chaturvedi, 2000). 

Model Convergence 

 A common difficulty with LMM analyses is model convergence (Bates, Kliegl, 

Vasishth, & Baayen, 2015). Model convergence occurs when the iterative maximum-

likelihood procedure has arrived at a stable set of estimates (i.e., there is minimal change in 

estimates with further iteration). However, when models have large numbers of random 

effects this optimisation process can then take a large number of iterations before it converges 

(Bates et al., 2015). Problems with convergence can also be exacerbated by the presence of 

unnecessary random effects in the model, that is, if there are random effects for parameters 

that have very little variance between individuals or groups. (Bates et al., 2015).  

 If issues with model convergence are encountered in the present analysis, the 

maximum number of iterations for the optimisation procedure will first be increased. If 
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increasing the number of iterations does not improve convergence, more parsimonious 

random effect structures will be used (e.g., removing the random intercept for group). 

Model Parsimoniousness 

 The analytic approaches described have been chosen for their increased flexibility and 

minimal assumptions about the direction or nature of relationships between variables. 

However, given the additional number of parameters that need to be estimated, this flexibility 

may come at the cost of precision in the estimates. To assess whether the flexible modelling 

of time is needed, plots of the observed and model-estimated values at each measurement 

occasion will be inspected. If simpler model structures (e.g., linear splines) appear 

appropriate, the model will be re-fitted, and the estimates inspected. Similarly, the residual 

variance-covariance matrix of the residuals will be inspected to identify whether a more 

parsimonious structure would be appropriate (e.g., CAR1). 

Multiple Imputation 

To assess whether the imputation model was consistent with the observed data, the 

analysis results will be compared with the results of applying each model to the observed 

(partially missing) data. The estimates from the multiply-imputed and the observed data 

should be broadly consistent. If the estimates markedly differ from each other, this could 

indicate issues with either the imputation model or algorithm, or the presence of bias in 

estimates with partially missing data that has been corrected by the imputation model. 

A key sensitivity analyses will be testing the sensitivity of the results to violations of 

the missing at random (MAR) assumption. As multiple imputation assumes that the data are 

MAR, the imputed values could be biased if this is not the case. In other words, if there is a 

systematic reason for why some individuals did not adhere to treatment, ignoring this when 

imputing their missing responses could bias the results away from the ‘true’ effect. A 

common means of testing this assumption is called a ‘tipping-point’ analysis (Mallinckrodt & 

Lipkovich, 2017). The tipping-point approach to sensitivity analysis is implemented by 

modifying the imputed data by increasing amounts and identifying the magnitude of changes 

in imputed data that would be required for the results to longer be significant (Mallinckrodt & 

Lipkovich, 2017). This is achieved through the repeated use of what is called a ‘delta-

adjustment’ of the imputed values (van Buuren, 2018). A delta-adjustment is simply the 

addition of a fixed value (delta) to every imputed response. In other words, this approach is 
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artificially raising or lowering the mean response of all non-adherent individuals. By using 

increasingly large values of delta (the fixed value), a sensitivity analysis can identify the 

extent to which the non-adherent individuals would need to differ in their response before 

there is no longer a significant difference between the treatment groups. 
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Summary of Confirmatory Analyses 

 

Outcome Analysis Fixed Effects Random Effects 
Residual Covariance 

Structure 

SPS & SIAS Linear Mixed Model 

• Baseline 

• Time (Categorical) 

• Treatment 

• Baseline*Time 

• Treatment*Time 

• Intercept (Group) 

• Unstructured 

• Heterogenous 

Variances 

BFNES, PROMIS 

Anxiety & Depression 
Linear Mixed Model 

• Baseline 

• Time (Piecewise) 

• Treatment 

• Baseline*Time 

• Treatment*Time 

• Intercept (Group) 

• CAR1 

• Heterogenous 

Variances 

Diagnostic Status 
Pooled Test of Difference 

in Proportions 

 

 

N/A 

 

 

N/A N/A 

Clinician-Rated Severity 
Cumulative-Link Mixed 

Model 

• Baseline 

• Time (Categorical) 

• Treatment 

• Baseline*Time 

• Treatment*Time 

• Intercept (Group) 

• Intercept 

• Time 

N/A 
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